check:
$$ak = bk \iff b^{d}a \in K$$
 (by def of left web),
i.e.: $\bigotimes \mathscr{C}(b^{-\prime}a) = e^{\prime}$ (by def of $t = ker(\mathscr{P})$)
 $\bigotimes \mathscr{P}(b^{-\prime}) \mathscr{P}(a) = e^{\prime}$ ($\mathscr{P} is = hom$)
 $\bigotimes \mathscr{P}(b^{-\prime}) \mathscr{P}(a) = \mathscr{P}(b)$ ($\mathscr{P}(b^{-\prime}) = \mathscr{P}(b)^{-\prime}$)
 $\iff \widetilde{\mathscr{P}}(a \not P) = \widetilde{\mathscr{P}}(b \not R)$ (by $def e \not P$)

Then
$$SL_n(F) = ter(old^{+})$$

and also det is surjective since, for any act^X,
 $det \begin{pmatrix} a_1 & a_1 \\ a_2 & a_1 \end{pmatrix} = a \cdot 1 \cdot \cdot 1 = a$
Hence $SL_n(F) = ker(det)$ is a normal algrap.
(b) $GL_n(F) \xrightarrow{det} F^{X}$
 $\sqrt[4]{F} \xrightarrow{det} F^{X}$
 $\int SL_n(F) \xrightarrow{det} GL_n(F) \xrightarrow{det} F^{X}$
 $GL_n(F)/SL_n(F)$
This shows that $GL_n(F)/SL_n(F) = F^{X}$
 $GL_n(Z_3)/SL_2(Z_3) \xrightarrow{a} Z_3^{X} \xrightarrow{a} Z_2$
Frencise let $PSL_2(F) = SL_2(F)/(t+1)$
 $Identify the groups $\int PSL_2(Z_3)$.
 $SL_1(Z_3)$$